90 research outputs found

    Association of Body Mass and Brain Activation during Gastric Distention: Implications for Obesity

    Get PDF
    BACKGROUND:Gastric distention (GD), as it occurs during meal ingestion, signals a full stomach and it is one of the key mechanisms controlling food intake. Previous studies on GD showed lower activation of the amygdala for subjects with higher body mass index (BMI). Since obese subjects have dopaminergic deficits that correlate negatively with BMI and the amygdala is innervated by dopamine neurons, we hypothesized that BMI would correlate negatively with activation not just in the amygdala but also in other dopaminergic brain regions (midbrain and hypothalamus). METHODOLOGY/PRINCIPAL FINDINGS:We used functional magnetic resonance imaging (fMRI) to evaluate brain activation during GD in 24 healthy subjects with BMI range of 20-39 kg/m(2). Using multiple regression and cross-correlation analyses based on a family-wise error corrected threshold P = 0.05, we show that during slow GD to maximum volumes of 500 ml and 700 ml subjects with increased BMI had increased activation in cerebellum and left posterior insula, and decreased activation of dopaminergic (amygdala, midbrain, hypothalamus, thalamus) and serotonergic (pons) brain regions and anterior insula, regions that were functionally interconnected with one another. CONCLUSIONS:The negative correlation between BMI and BOLD responses to gastric distention in dopaminergic (midbrain, hypothalamus, amygdala, thalamus) and serotonergic (pons) brain regions is consistent with disruption of dopaminergic and serotonergic signaling in obesity. In contrast the positive correlation between BMI and BOLD responses in posterior insula and cerebellum suggests an opposing mechanism that promotes food intake in obese subjects that may underlie their ability to consume at once large food volumes despite increasing gastric distention

    Off-axis effects on the multipulse structure of sperm whale usual clicks with implications for sound production

    Get PDF
    Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 118 (2005): 3337-3345, doi:10.1121/1.2082707.Sperm whales (Physeter macrocephalus) produce multipulsed clicks with their hypertrophied nasal complex. The currently accepted view of the sound generation process is based on the click structure measured directly in front of, or behind, the whale where regular interpulse intervals (IPIs) are found between successive pulses in the click. Most sperm whales, however, are recorded with the whale in an unknown orientation with respect to the hydrophone where the multipulse structure and the IPI do not conform to a regular pulse pattern. By combining far-field recordings of usual clicks with acoustic and orientation information measured by a tag on the clicking whale, we analyzed clicks from known aspects to the whale. We show that a geometric model based on the bent horn theory for sound production can explain the varying off-axis multipulse structure. Some of the sound energy that is reflected off the frontal sac radiates directly into the water creating an intermediate pulse p1/2 seen in off-axis recordings. The powerful p1 sonar pulse exits the front of the junk as predicted by the bent-horn model, showing that the junk of the sperm whale nasal complex is both anatomically and functionally homologous to the melon of smaller toothed whales.This work was funded by grants to from the Office of Naval Research Grant Nos. N00014-99-1-0819 and No. N00014-01-1-0705, and the Packard Foundation

    Avant-garde and experimental music

    No full text

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    From Romantic Gothic to Victorian Medievalism: 1817 and 1877

    Get PDF
    "The Cambridge History of the Gothic was conceived in 2015, when Linda Bree, then Editorial Director at Cambridge University Press, first suggested the idea to us

    The Gothic in Victorian Poetry

    Get PDF

    Functional Programming for Discrete Process Control

    No full text

    A comparison of sevoflurane to halothane in paediatric surgical patients: Results of a multicentre international study

    No full text
    Induction, emergence and recovery characteristics were compared during sevoflurane or halothane anaesthetic in a large (428) multicentre, international study of children undergoing elective inpatient surgical procedures. Two hundred and fourteen children in each group underwent inhalation induction with nitrous oxide/oxygen and sevoflurane or halothane. Incremental doses of either study drug were added until loss of eyelash reflex was achieved. Steady state concentrations of anaesthesia were maintained until the end of surgery when anaesthetic agents were terminated simultaneously. Time variables were recorded for induction, emergence and the first need for analgesia in the recovery room. In addition, in 86 of the children in both groups, venous blood samples were drawn for plasma fluoride levels during and after surgery. There was a trend toward smoother induction (induction of anaesthesia without coughing, breath holding, excitement laryngospasm, bronchospasm, increased secretion, and vomiting) in the sevoflurane group with faster induction (2.1 min vs 2.9 min, P = 0.037) and rapid emergence times (10.3 min vs 13.9 min, P = 0.003). Among the children given sevoflurane, 2% developed bradycardia compared with 11% in the halothane group. Postoperatively, 46% of the children in the halothane group developed nausea and or vomiting versus 31% in the sevoflurane group (P = 0.002). Two children in the halothane group developed cardiac dysrhythmia and were dropped from the study. In addition, a child in the halothane group developed malignant hyperthermia, received dantrolene, and had an uneventful recovery. Mean maximum inorganic fluoride concentration was 18.3 ΌM·1 1. The fluoride concentrations peaked within one h of termination of sevoflurane anaesthetic and returned rapidly to baseline within 48 h. This study suggests that sevoflurane may be the drug of choice for the anaesthetic management of children.SCOPUS: ar.jFLWNAinfo:eu-repo/semantics/publishe
    • 

    corecore